On locating-chromatic number of complete n -ary tree
نویسندگان
چکیده
Let c be a vertex k -coloring on a connected graph G(V,E) . Let Π = {C1, C2, ..., Ck} be the partition of V (G) induced by the coloring c . The color code cΠ(v) of a vertex v in G is (d(v, C1), d(v, C2), ..., d(v, Ck)), where d(v, Ci) = min{d(v, x)|x ∈ Ci} for 1 ≤ i ≤ k. If any two distinct vertices u, v in G satisfy that cΠ(u) 6= cΠ(v), then c is called a locating k-coloring of G . The locating-chromatic number of G, denoted by χL(G), is the smallest k such that G admits a locating k -coloring. Let T (n, k) be a complete n -ary tree, namely a rooted tree with depth k in which each vertex has n children except for its leaves. In this paper, we study the locating-chromatic number of T (n, k) .
منابع مشابه
The locating chromatic number of the join of graphs
Let $f$ be a proper $k$-coloring of a connected graph $G$ and $Pi=(V_1,V_2,ldots,V_k)$ be an ordered partition of $V(G)$ into the resulting color classes. For a vertex $v$ of $G$, the color code of $v$ with respect to $Pi$ is defined to be the ordered $k$-tuple $c_{{}_Pi}(v)=(d(v,V_1),d(v,V_2),ldots,d(v,V_k))$, where $d(v,V_i)=min{d(v,x):~xin V_i}, 1leq ileq k$. If distinct...
متن کاملThe locating-chromatic number for Halin graphs
Let G be a connected graph. Let f be a proper k -coloring of G and Π = (R_1, R_2, . . . , R_k) bean ordered partition of V (G) into color classes. For any vertex v of G, define the color code c_Π(v) of v with respect to Π to be a k -tuple (d(v, R_1), d(v, R_2), . . . , d(v, R_k)), where d(v, R_i) is the min{d(v, x)|x ∈ R_i}. If distinct vertices have distinct color codes, then we call f a locat...
متن کاملAn eccentric coloring of trees
Eccentric coloring is a new variation of coloring, where higher numbered colors can not be used as freely as lower numbered colors. In addition there is a correspondence between the eccentricity (max distance) of a vertex and the highest legal color for that vertex. In this note we investigate eccentric coloring of trees. We give the eccentric chromatic number or a bound on the eccentric chroma...
متن کاملOn the Locating Chromatic Number of the Cartesian Product of Graphs
Let c be a proper k-coloring of a connected graph G and Π = (V1, V2, . . . , Vk) be an ordered partition of V (G) into the resulting color classes. For a vertex v of G, the color code of v with respect to Π is defined to be the ordered k-tuple cΠ(v) := (d(v, V1), d(v, V2), . . . , d(v, Vk)), where d(v, Vi) = min{d(v, x) | x ∈ Vi}, 1 ≤ i ≤ k. If distinct vertices have distinct color codes, then ...
متن کاملCharacterizing all trees with locating-chromatic number 3
Let c be a proper k-coloring of a connected graph G. Let Π = {S1, S2, . . . , Sk} be the induced partition of V (G) by c, where Si is the partition class having all vertices with color i. The color code cΠ(v) of vertex v is the ordered k-tuple (d(v, S1), d(v, S2), . . . , d(v, Sk)), where d(v, Si) = min{d(v, x)|x ∈ Si}, for 1 ≤ i ≤ k. If all vertices of G have distinct color codes, then c is ca...
متن کامل